If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2-1600t+14400=0
a = 16; b = -1600; c = +14400;
Δ = b2-4ac
Δ = -16002-4·16·14400
Δ = 1638400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1638400}=1280$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1600)-1280}{2*16}=\frac{320}{32} =10 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1600)+1280}{2*16}=\frac{2880}{32} =90 $
| -4-(5x-6)=8-4x | | 9c=1.08 | | 108+x=257 | | 3.5(3.8x+.2)=-92.4 | | 3.5(3.8x+.2=-92.4 | | 7(x+8)=6(x+10) | | x+16=20;4= | | 2x+4=-4x+34 | | 3.77x=13 | | Y=-28x | | 9+15b=310b | | 5/8m=6/3.4 | | 5/8m=6/34 | | -17=x-15=x | | 9+5x=6x+ | | x2+2x+100=0 | | 80-5x=2x+40 | | 13/17=y/12 | | x^2+2x-11=-111 | | t/2.5=- | | 15.2+y=22y=6.8 | | x^2=15+9+(8+4) | | -1+2m-m=0 | | -15.2+q=-4.2 | | 68=5u-12 | | 15=2x+(10-3^2) | | F(x)=10(0.45) | | 134v=3 | | 15=2x+(10-9) | | 3b=-12b | | m/4+12=20-6 | | 4(x+12)=3(x+15) |